Effects of Bus Stop Spacing in **Public Transportation** Performance: An Analysis of Parallel Corridors in Chicago Dimitris Nioras, MS, ME Illinois Institute of Technology

#BetterBus

Some Personal Facts

- Born and raised in Athens, Greece
- Redesigned the bus route network in Athens at age 17

No, seriously!

Some Personal Facts

- Born and raised in Athens, Greece
- Redesigned the bus route network in Athens at age 17
- NTUA MS Diploma in Surveying Engineering, 2016
- (still bothering elected officials and transportation planners in the meantime...)
- IIT ME in Transportation Engineering, 2019
- CMAP Transportation Planning Intern, 2018-2019
- CTA Service Planner, Bus (upcoming)

5	Introduction
	Study Area
Ć	Goals and Objectives
¢	Methodology
<u>u.</u>	Results
Q	Discussion

Introduction

Public transit is...

- Essential in dense areas
- Efficient
- Outdated
- Underfunded

Advantages of Bus networks

- Flexible routing and stop location
- Low operation and maintenance costs
- Low infrastructure costs
- Effective in high or low density areas
- Local, express or feeder service
- Eliminates coverage gaps

About stop spacing

• What is stop spacing?

The distance between two consecutive stops along a bus route

- Useful to specify:
 - Coverage area
 - Type of service
- It is typically predefined
 - System-wide policy
 - Local deviations based on locations of interests or other factors

Why bother?

- Long spacing reduces travel time (typically)
- Long spacing also decreases coverage area
- Long spacing increases dwell time
- Short spacing minimizes walking times (think elders and riders with disabilities)
- Short spacing frustrates commuters

Study Area – Chicago Transit Authority

Second largest public transit agency in the US

- 1.97 billion annual passenger miles
- 1.5 million average weekday unlinked trips
- 140 bus routes
- 52.3 million annual bus revenue miles on over 25,000 daily bus trips

Studied Corridors

- Halsted (#8)
- Ashland (#9, #X9)
- Damen (#50)
- Western (#49, #X49)

Stop Spacing Policy

- 1/8 mile on regular routes
- 1/2 mile on express routes
- 1/4 mile on routes #9,#49 with the introduction of express service
- 1/4 mile walking distance to bus stop

Goals and Objectives

- Analyze coverage area of each route based on stop spacing
- Analyze scheduling and ridership patterns along these corridors
- Compare these patterns before and after the stop consolidation
- Discuss the patterns related to stop spacing

Methodology

Service Area Analysis

Travel Time and Ridership Analysis

Service Area Analysis

- Stop buffer
 - 1/4 mile circular buffer around stop
 - May overlap with other stops
- Stop Voronoi polygon
 - The area that, at any location, one stop is the closest of all in a route
 - Cannot overlap with other stops
- Stop service area
 - The combination of the stop's buffer and Voronoi polygon
- Route service area
 - The total of the service areas of all stops serving the route

Service Area – Performance Measures

- Stop service area ratio
 - The percentage of the buffer area that is dedicated to this stop
 - Measured as stop service area / stop buffer
 - Longer spacings lead to higher values and less overlap between stops
- Route service area ratio
 - The ratio of the route service area to the route line buffer (1/4 mile along the line)
 - Measured as route service area / route buffer
 - Shorter spacings lead to higher values and fewer coverage gaps along the route

Travel Time and Ridership Analysis

- GTFS weekday scheduled data extracted and summarized:
 - By route: travel times between routes are compared
 - By period: each route is compared in different periods, having modified stop spacing in each period
 - Examined segments: Southbound Addison to Cermak
- Ridership:
 - Average weekday boardings per route
 - Summarized by quarter

Results – Service Area Analysis

Route	Stop Spacing [mi]	Stop Service Area [acres]	Stop Buffer Size [acres]	% Stop Service Area to Buffer	Route Service Area [acres]	Route Buffer Size [acres]	% Route Service Area to Buffer
8	0.138	4.075	11.626	35.05%	423.84	426.58	99.36%
9	0.203	5.907	11.626	50.81%	531.66	543.67	97.80%
X9	0.483	11.626	11.626	100.00%	410.37	525.88	78.03%
50	0.133	3.936	11.626	33.86%	340.43	354.89	95.93%
49	0.193	5.777	11.626	49.69%	473.72	482.83	98.11%
X49	0.445	10.836	11.626	93.20%	379.27	482.83	78.55%

Results – Travel Time Analysis

Before Stop Consolidation

After Stop Consolidation

Results – Travel Time Analysis (cont.)

#9 Ashland

#49 Western

2013

2015

2018

Results – Travel Time Analysis (cont.)

	2013		2015		2016		2018			
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	% Mean	% Mean
Pouto	Travel	2013-	2016-							
Noule	Havei	Haver	Havei	Havei	Havei	Havei	Havei	Havei	2018	2018
	Time									
8	40:04	4:26	45:14	5:39	45:14	5:39	43:11	5:19	7.78%	-4.53%
9	38:28	4:24	38:34	4:27	37:29	4:17	36:36	4:13	-4.85%	-2.36%
X9					34:48	2:40	40:17	5:03		15.76%
50	37:02	3:18	36:56	3:14	36:58	3:15	37:02	3:16	0.00%	0.18%
49	38:33	5:01	38:24	4:56	37:09	4:42	35:46	4:24	-7.22%	-3.72%
	33.33	5.01	33.24	1.50	37.05	1.72	33.40	1.2-1	,.2270	3.7270
X49					35:56	3:39	36:07	3:39		0.51%

Results – Ridership Analysis

Results – Ridership Analysis (cont.)

Cumulative Ridership Ashland Ave (#9, #X9) Cumulative Ridership Western Ave (#49, #X49)

Discussion

- The stop consolidation led to decreased travel times without identified ridership impacts
- Stop spacing should be based on a balanced compromise of speed and coverage
- Consolidating bus stops may make transit more attractive; savings can be reallocated to network improvements
- Consolidating bus stops may also lead to longer dwell times
- A specific coverage level should be maintained, based on each case

Thank you!

Dimitris Nioras, MS, ME dimnioras@icloud.com

