Effects of Bus Stop Spacing in Public Transportation Performance:

An Analysis of Parallel Corridors in Chicago
Dimitris Nioras, MS, ME
Illinois Institute of Technology

Some Personal Facts

- Born and raised in Athens, Greece
- Redesigned the bus route network in Athens at age 17

No, seriously!

Some Personal Facts

- Born and raised in Athens, Greece
- Redesigned the bus route network in Athens at age 17
- NTUA - MS Diploma in Surveying Engineering, 2016
- (still bothering elected officials and transportation planners in the meantime...)
- IIT - ME in Transportation Engineering, 2019
- CMAP - Transportation Planning Intern, 2018-2019
- CTA - Service Planner, Bus (upcoming)

Overview

```
\(\square\) Introduction
```

ㄷ. Study Area
(C) Goals and Objectives

- Methodology

㟶 Results

Q Discussion

Introduction

Public transit is...

- Essential in dense areas
- Efficient
- Outdated
- Underfunded

Advantages of Bus networks

- Flexible routing and stop location
- Low operation and maintenance costs
- Low infrastructure costs
- Effective in high or low density areas
- Local, express or feeder service
- Eliminates coverage gaps
- What is stop spacing?

The distance between two consecutive stops along a bus route

About stop spacing

- Useful to specify:
- Coverage area
- Type of service
- It is typically predefined
- System-wide policy
- Local deviations based on locations of interests or other factors

Why bother?

- Long spacing reduces travel time (typically)
- Long spacing also decreases coverage area
- Long spacing increases dwell time
- Short spacing minimizes walking times (think elders and riders with disabilities)
- Short spacing frustrates commuters

Study Area Chicago Transit Authority

Second largest public transit agency in the US

- 1.97 billion annual passenger miles
- 1.5 million average weekday unlinked trips
- 140 bus routes
- 52.3 million annual bus revenue miles on over 25,000 daily bus trips

Studied Corridors

- Halsted (\#8)
- Ashland (\#9, \#X9)
- Damen (\#50)
- Western (\#49, \#X49)

Stop Spacing Policy

- $1 / 8$ mile on regular routes
- $1 / 2$ mile on express routes
- $1 / 4$ mile on routes $\# 9, \# 49$ with the introduction of express service
- $1 / 4$ mile walking distance to bus stop

Goals and Objectives

- Analyze coverage area of each route based on stop spacing
- Analyze scheduling and ridership patterns along these corridors
- Compare these patterns before and after the stop consolidation
- Discuss the patterns related to stop spacing

Methodology

Service Area Analysis

Travel Time and
Ridership Analysis

Service Area Analysis

- Stop buffer
- 1/4 mile circular buffer around stop
- May overlap with other stops
- Stop Voronoi polygon
- The area that, at any location, one stop is the closest of all in a route
- Cannot overlap with other stops
- Stop service area
- The combination of the stop's buffer and Voronoi polygon
- Route service area
- The total of the service areas of all stops serving the route

Bus Stop Buffers

Bus Route

- Bus Stop

Bus Stop Buffer

Bus Stop Thiessen Polygons

Bus Stop Service Areas

- Bus Stop

Service Area - Performance Measures

- Stop service area ratio
- The percentage of the buffer area that is dedicated to this stop
- Measured as stop service area / stop buffer
- Longer spacings lead to higher values and less overlap between stops
- Route service area ratio
- The ratio of the route service area to the route line buffer ($1 / 4$ mile along the line)
- Measured as route service area / route buffer
- Shorter spacings lead to higher values and fewer coverage gaps along the route

Travel Time and Ridership Analysis

- GTFS weekday scheduled data extracted and summarized:
- By route: travel times between routes are compared
- By period: each route is compared in different periods, having modified stop spacing in each period
- Examined segments: Southbound Addison to Cermak
- Ridership:
- Average weekday boardings per route
- Summarized by quarter

Results - Service Area Analysis

Route	Stop Spacing [mi]	Stop Service Area [acres]	Stop Buffer Size [acres]	\% Stop Service Area to Buffer	Route Service Area [acres]	Route Buffer Size [acres]	\% Route Service Area to Buffer
8	0.138	4.075	11.626	35.05\%	423.84	426.58	99.36\%
9	0.203	5.907	11.626	50.81\%	531.66	543.67	97.80\%
X9	0.483	11.626	11.626	100.00\%	410.37	525.88	78.03\%
50	0.133	3.936	11.626	33.86\%	340.43	354.89	95.93\%
49	0.193	5.777	11.626	49.69\%	473.72	482.83	98.11\%
X49	0.445	10.836	11.626	93.20\%	379.27	482.83	78.55\%

Results - Travel Time Analysis

Before Stop Consolidation

After Stop Consolidation

Results - Travel Time Analysis (cont.)

\#9 Ashland

\#49 Western

Results - Travel Time Analysis (cont.)

	2013		2015		2016		2018		\% Mea	\% Mean
Route	Mean Travel Time	Std Travel Time	Mean Travel Time	Std Travel Time	Mean Travel Time	Std Travel Time	Mean Travel Time	Std Travel Time	$\begin{aligned} & 2013- \\ & 2018 \end{aligned}$	2016- 2018
8	40:04	4:26	45:14	5:39	45:14	5:39	43:11	5:19	7.78\%	-4.53\%
9	38:28	4:24	38:34	4:27	37:29	4:17	36:36	4:13	-4.85\%	-2.36\%
X9					34:48	2:40	40:17	5:03		15.76\%
50	37:02	3:18	36:56	3:14	36:58	3:15	37:02	3:16	0.00\%	0.18\%
49	38:33	5:01	38:24	4:56	37:09	4:42	35:46	4:24	-7.22\%	-3.72\%
X49					35:56	3:39	36:07	3:39		0.51\%

Results - Ridership Analysis

Results - Ridership Analysis (cont.)

Cumulative Ridership
Ashland Ave (\#9, \#X9)

Cumulative Ridership

Western Ave (\#49, \#X49)

Discussion

- The stop consolidation led to decreased travel times without identified ridership impacts
- Stop spacing should be based on a balanced compromise of speed and coverage
- Consolidating bus stops may make transit more attractive; savings can be reallocated to network improvements
- Consolidating bus stops may also lead to longer dwell times
- A specific coverage level should be maintained, based on each case

Thank you！

Dimitris Nioras，MS，ME
dimnioras＠icloud．com

軨回 TRANSPORT
 5Mary Prexiry回首定
 CHICAGO
 （ \sim Get Report

